
RESTful Web Services
Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4867–11
April 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090402@21990

Contents

1 Introduction to RESTful Web Services and Jersey .. 5
What Are RESTful Web Services? ..5
How Does Jersey Fit In? ...6
Learning More About RESTful Web Services ...6

2 Installing Jersey and the Jersey Sample Applications .. 9
Installing Jersey on GlassFish ..9

▼ Adding Jersey to GlassFish ...9
Installing Jersey in NetBeans .. 10
Installing and Running the Jersey Sample Applications ... 10

Installing the Jersey Sample Applications ... 10
Running the Jersey Examples ... 10

▼ Running the Examples from the Command Line ... 10
▼ Running the Jersey Examples from NetBeans .. 11

3 Creating a RESTful Resource Class .. 13
Developing RESTful Web Services with Jersey .. 13

Overview of a Jersey-Annotated Application ... 13
What Are Some of the Annotations Defined by JAX-RS? ... 15

The @Path Annotation and URI Path Templates .. 16
More on URI Path Template Variables ... 17

Responding to HTTP Resources ... 18
The Request Method Designator Annotations .. 18
Using Entity Providers to Map HTTP Response and Request Entity Bodies 19

Using @Consumes and @Produces to Customize Requests and Responses 21
The @Produces Annotation .. 21
The @Consumes Annotation .. 22

3

Extracting Request Parameters .. 23
Overview of JAX-RS and Jersey: Further Information .. 27

4 Creating, Deploying, and Running Jersey Applications ... 29
Using NetBeans to Create Jersey Applications .. 29

▼ Creating a Jersey-Annotated Web Application using NetBeans IDE 29
▼ Deploying and Testing a Jersey Application using NetBeans IDE ... 31

Deploying and Testing a Jersey Application Without NetBeans ... 31
▼ Deploying and Testing a Jersey Application without NetBeans ... 31

Deploying a RESTful Web Service ... 32

5 Jersey Sample Applications ...35
The Jersey Sample Applications ... 35

Configuring Your Environment .. 35
The HelloWorld-WebApp Application .. 36

Annotating the Resource Class .. 36
Configuring the Resource with the Runtime .. 37

▼ Building and Running the HelloWorld-WebApp Application in NetBeans 37
▼ Building and Running the HelloWorld-WebApp Application with Maven 38

The Storage-Service Application ... 38
Understanding the Web Resource Classes for the Storage-Service Example 39

▼ Building and Running the Storage-Service Application from the Command Line 44
▼ Exploring the Storage-Service Example .. 44

Extending the Storage-Service Example ... 46
Example: The Storage-Service WADL .. 47

The Bookstore Application .. 48
Web Resources for Bookstore Application ... 48
Mapping the URI Path in the Bookstore Example ... 50
Mapping the URI Paths and JSP Pages .. 50

▼ Building and Running the Bookstore Application from a Terminal Window 51
▼ Building and Running the Bookstore Application from NetBeans IDE 51

Other Jersey Examples .. 52

Index ..55

Contents

RESTful Web Services Developer's Guide • April 20094

Introduction to RESTful Web Services and
Jersey

This chapter describes the REST architecture, RESTful web services, and Sun's reference
implementation for JAX-RS (JavaTM API for RESTful Web Services, JSR-311), which is referred
to as Jersey.

What Are RESTful Web Services?
RESTful web services are services that are built to work best on the web. Representational State
Transfer (REST) is an architectural style that specifies constraints, such as the uniform
interface, that if applied to a web service induce desirable properties, such as performance,
scalability, and modifiability, that enable services to work best on the Web. In the REST
architectural style, data and functionality are considered resources, and these resources are
accessed using Uniform Resource Identifiers (URIs), typically links on the web. The resources
are acted upon by using a set of simple, well-defined operations. The REST architectural style
constrains an architecture to a client-server architecture, and is designed to use a stateless
communication protocol, typically HTTP. In the REST architecture style, clients and servers
exchange representations of resources using a standardized interface and protocol. These
principles encourages RESTful applications to be simple, lightweight, and have high
performance.

RESTful web services typically map the four main HTTP methods to the operations they
perform : create, retrieve, update, and delete. The following table shows a mapping of HTTP
methods to the operations they perform.

TABLE 1–1 Mapping HTTP Methods to Operations Performed

HTTP Method Operations Performed

GET Get a resource

POST Create a resource and other operations, as it has no defined semantics

1C H A P T E R 1

5

https://jsr311.dev.java.net/

TABLE 1–1 Mapping HTTP Methods to Operations Performed (Continued)
HTTP Method Operations Performed

PUT Create or update a resource

DELETE Delete a resource

How Does Jersey Fit In?
Jersey is Sun's production quality reference implementation for JSR 311: JAX-RS: The Java API
for RESTful Web Services. Jersey implements support for the annotations defined in JSR-311,
making it easy for developers to build RESTful web services with Java and the Java JVM. Jersey
also adds additional features not specified by the JSR.

The latest version of the JAX—RS API's can be viewed at
https://jsr311.dev.java.net/nonav/javadoc/index.html

Learning More About RESTful Web Services
The information in this guide focuses on learning about Jersey. If you are interested in learning
more about RESTful Web Services in general, here are a few links to get you started.

■ The Community Wiki for Project Jersey has loads of information on all things RESTful.
You'll find it at http://wikis.sun.com/display/Jersey/Main.

■ Fielding Dissertation: Chapter 5: Representational State Transfer (REST), at
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

■ Representational State Transfer, from Wikipedia,
http://en.wikipedia.org/wiki/Representational_State_Transfer.

■ RESTful Web Services, by Leonard Richardson and Sam Ruby. Available from O'Reilly
Media at http://www.oreilly.com/catalog/9780596529260/.

Some of the Jersey team members discuss topics out of the scope of this tutorial on their blogs. A
few are listed below:

■ Earthly Powers, by Paul Sandoz, at http://blogs.sun.com/sandoz/category/REST.
■ Marc Hadley's Blog, at http://weblogs.java.net/blog/mhadley/
■ Japod's Blog, by Jakub Podlesak, at http://blogs.sun.com/japod/category/REST.

You can always get the latest technology and information by visiting the Java Developer's
Network. The links are listed below:

■ Get the latest on JSR-311, the Java API's for RESTful Web Services (JAX-RS), at
https://jsr311.dev.java.net/.

How Does Jersey Fit In?

RESTful Web Services Developer's Guide • April 20096

http://jcp.org/en/jsr/detail?id=311
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features
https://jsr311.dev.java.net/nonav/javadoc/index.html
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.oreilly.com/catalog/9780596529260/
http://blogs.sun.com/sandoz/category/REST
http://weblogs.java.net/blog/mhadley/
http://blogs.sun.com/japod/category/REST
https://jsr311.dev.java.net/

■ Get the latest on Jersey, the open source JAX-RS reference implementation, at
https://jersey.dev.java.net/.

Learning More About RESTful Web Services

Chapter 1 • Introduction to RESTful Web Services and Jersey 7

https://jersey.dev.java.net/

8

Installing Jersey and the Jersey Sample
Applications

The chapter describes how to download and install Jersey onto the GlassFishTM container. It also
describes how to download the Jersey plugin for NetBeansTM.

Installing Jersey on GlassFish
The following section provides details for installing Jersey on Sun GlassFish Enterprise Server
v3 Prelude (hereafter referred to as GlassFish v3 Prelude, or simply GlassFish). These steps
assume that GlassFish is installed on your system. Jersey is installed as an add-on to GlassFish
using the Update Tool that ships with GlassFish. The sample applications that ship with Jersey
are also installed during this step.

▼ Adding Jersey to GlassFish
This task describes how to download and add Jersey technology to the GlassFish container.

Start the Update Tool.
There are several ways to start the Update Tool. Here a few of the options:

■ From the Windows Start menu, select GlassFish v3 Prelude, then select Start Update Tool.
■ From a Windows file browser or command prompt, or from a Unix terminal prompt,

change to the directory where GlassFish was installed, then the bin directory, and run
updatetool.exe (Windows) or updatetool (Unix).

■ From a web browser, open the Admin Console by going to http://localhost:4848, then
select Update Tool from the left pane.

Click Available Add-ons.

Select Jersey RESTful Web Services for GlassFish.

2C H A P T E R 2

1

2

3

9

Click Install.

Accept the license.

Installing Jersey in NetBeans
The RESTful Web Services plugin comes bundled with NetBeans IDE 6.5 when you select a
NetBeans Pack that includes Java Web and EE. No additional steps are needed to configure and
use the Jersey APIs with one of these NetBeans packs. If you've installed a pack that doesn't
include Jersey, use the update center to install it.

Installing and Running the Jersey Sample Applications
Jersey includes a very thorough collection of sample applications intended to help you become
acquainted with using the RESTful APIs. Several of the sample applications are referenced for
sample code throughout this tutorial, and several of the sample applications are discussed in
some detail in Chapter 5, “Jersey Sample Applications”

Installing the Jersey Sample Applications
If you have installed the Jersey add-on to GlassFish, you will find the sample applications in the
directory as-install/jersey/samples.

If you installed Jersey as part of the NetBeans IDE, you will have to download the sample
applications from the repository. To download the version of the samples that are shipping with
Jersey FCS 1.0, click here.

Running the Jersey Examples
The Jersey sample applications are built, run, and deployed using Maven. Maven is a software
project management tool, similar to Ant. Ant is a build tool for Java programs. Maven is also a
build tool, and can in fact run Ant targets, but Maven adds an organization and structure layer
to make the build process easier, to provide a uniform build environment, and to generate
quality project information.

▼ Running the Examples from the Command Line
After you have downloaded the Jersey samples, follow these steps to run the samples from the
command line.

4

5

Installing Jersey in NetBeans

RESTful Web Services Developer's Guide • April 200910

http://download.java.net/maven/2/com/sun/jersey/samples/jersey-samples/1.0/jersey-samples-1.0-project.zip

Download and install Maven 2.0.9 or higher from the Apache Maven Project web site at
http://maven.apache.org/download.html. Make sure to follow the instructions in the Maven
README.html file which include adding the maven/bindirectory to your path statement.

In a terminal window or command prompt, change to the directory for the sample application
you'd like to run. For example, to run the HelloWorld sample, change to
jersey/samples/helloworld.

Read the README.html file for the sample, and follow the steps listed for running the sample. For
example, to run the HelloWorld sample, run mvn compile exec:java, and follow the
instructions on the screen and in the README.html file.

▼ Running the Jersey Examples from NetBeans
To run the Jersey samples from NetBeans, follow these steps.

If you didn't do this in the previous task, download and install Maven 2.0.9 or higher from the
Apache Maven Project web site at http://maven.apache.org/download.html. Make sure to
follow the instructions in the Maven README.html file which include adding the maven/bin
directory to your path statement.

From the NetBeans IDE, install the Maven plugin. To do this, select Tools→Plugins, select Maven,
click Install, and follow the prompts.

Configure Maven in NetBeans IDE. To do this, select Tools→Options, select Miscellaneous from
the top panel, then select the Maven tab.

For the External Maven Home field, browse to your Maven installation.

If the option is available, check Always use external Maven for building projects. Close the
dialog.

From the NetBeans IDE, select File→Open Project, and then browse to the location of the
project you'd like to open, for example, jersey/samples/helloworld.

Check Open as Main Project, then click Open Project.

Right-click the project and select Run.

Follow the instructions from the prompt. For example, if you're running HelloWorld, enter
http://localhost:9998/helloworld in a web browser.

1

2

3

1

2

3

4

5

6

7

8

9

Installing and Running the Jersey Sample Applications

Chapter 2 • Installing Jersey and the Jersey Sample Applications 11

http://maven.apache.org/download.html
http://maven.apache.org/download.html

12

Creating a RESTful Resource Class

Root resource classes are POJOs (Plain Old Java Objects) that are either annotated with@Path or
have at least one method annotated with @Path or a request method designator such as @GET,
@PUT, @POST, or @DELETE. Resource methods are methods of a resource class annotated with a
request method designator. This section describes how to use Jersey to annotate Java objects to
create RESTful web services.

Developing RESTful Web Services with Jersey
The JAX-RS API for developing RESTful web services is a Java programming language API
designed to make it easy to develop applications that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with
HTTP-specific annotations to define resources and the actions that can be performed on those
resources. Jersey annotations are runtime annotations, therefore, runtime reflection will
generate the helper classes and artifacts for the resource, and then the collection of classes and
artifacts will be built into a web application archive (WAR). The resources are exposed to clients
by deploying the WAR to a Java EE or web server.

Overview of a Jersey-Annotated Application
The following code sample is a very simple example of a root resource class using JAX-RS
annotations. The sample shown here is from the samples that ship with Jersey, and which can be
found in the following directory of that installation:
jersey/samples/helloworld/src/main/java/com/sun/jersey/samples/helloworld/resources/HelloWorldResour

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;

3C H A P T E R 3

13

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests

@GET

// The Java method will produce content identified by the MIME Media

// type "text/plain"
@Produces("text/plain")
public String getClichedMessage() {

// Return some cliched textual content

return "Hello World";
}

}

The following annotations are used in this example:

■ The @Path annotation's value is a relative URI path. In the example above, the Java class will
be hosted at the URI path /helloworld. This is an extremely simple use of the @Path
annotation. What makes JAX-RS so useful is that you can embed variables in the URIs. URI
path templates are URIs with variables embedded within the URI syntax.

■ The @GET annotation is a request method designator, along with@POST, @PUT, @DELETE, and
@HEAD, that is defined by JAX-RS, and which correspond to the similarly named HTTP
methods. In the example above, the annotated Java method will process HTTP GET
requests. The behavior of a resource is determined by the HTTP method to which the
resource is responding.

■ The @Produces annotation is used to specify the MIME media types of representations a
resource can produce and send back to the client. In this example, the Java method will
produce representations identified by the MIME media type "text/plain".

■ The @Consumes annotation is used to specify the MIME media types of representations a
resource can consume that were sent by the client. The above example could be modified to
set the cliched message as shown here:

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

Developing RESTful Web Services with Jersey

RESTful Web Services Developer's Guide • April 200914

What Are Some of the Annotations Defined by JAX-RS?
Here is a listing of some of the Java programming annotations that are defined by JAX-RS, with
a brief description of how each is used. Further information on the JAX-RS API's can be viewed
at https://jsr311.dev.java.net/nonav/javadoc/index.html.

TABLE 3–1 Summary of Jersey Annotations

Annotation Description

@Path The @Path annotation's value is a relative URI path indicating where the Java class will
be hosted, for example, /helloworld. You can also embed variables in the URIs to
make a URI path template. For example, you could ask for the name of a user, and pass
it to the application as a variable in the URI, like this, /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP GET requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP POST requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP PUT requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP DELETE requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP HEAD requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query
parameters.

@Consumes The @Consumes annotation is used to specify the MIME media types of representations
a resource can consume that were sent by the client.

Developing RESTful Web Services with Jersey

Chapter 3 • Creating a RESTful Resource Class 15

https://jsr311.dev.java.net/nonav/javadoc/index.html

TABLE 3–1 Summary of Jersey Annotations (Continued)
Annotation Description

@Produces The @Produces annotation is used to specify the MIME media types of representations
a resource can produce and send back to the client, for example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method
parameters. On the response side, a return value is mapped to an HTTP response
entity body using a MessageBodyWriter. If the application needs to supply additional
metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity, and which can be built using
Response.ResponseBuilder.

The @Path Annotation and URI Path Templates
The @Path annotation identifies the URI path template to which the resource responds, and is
specified at the class level of a resource. The @Path annotation's value is a partial URI path
template relative to the base URI of the server on which the resource is deployed, the context
root of the WAR, and the URL pattern to which the Jersey helper servlet responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables
are substituted at runtime in order for a resource to respond to a request based on the
substituted URI. Variables are denoted by curly braces. For example, look at the following
@Path annotation:

@Path("/users/{username}")

In this type of example, a user will be prompted to enter their name, and then a Jersey web
service configured to respond to requests to this URI path template will respond. For example, if
the user entered their user name as Galileo, the web service will respond to the following URL:

http://example.com/users/Galileo

To obtain the value of the username variable, the @PathParamannotation may be used on the
method parameter of a request method, as shown in the following code example.

@Path("/users/{username}")
public class UserResource {

@GET

@Produces("text/xml")
public String getUser(@PathParam("username") String userName) {

...

}

}

The @Path Annotation and URI Path Templates

RESTful Web Services Developer's Guide • April 200916

If it is required that a user name must only consist of lower and upper case numeric characters,
it is possible to declare a particular regular expression that will override the default regular
expression, "[^/]+?". The following example shows how this could be used with the @Path
annotation.

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

In this type of example the username variable will only match user names that begin with one
upper or lower case letter and zero or more alpha numeric characters and the underscore
character. If a user name does not match that template, then a 404 (Not Found) response will
occur.

An @Path value may or may not begin with a forward slash (/), it makes no difference. Likewise,
by default, an @Path value may or may not end in a forward lash (/), it makes no difference, and
thus request URLs that end or do not end with a forward slash will both be matched. However,
Jersey has a redirection mechanism, which, if enabled, automatically performs redirection to a
request URL ending in a / if a request URL does not end in a / and the matching @Path does end
in a /.

More on URI Path Template Variables
A URI path template has one or more variables, with each variable name surrounded by curly
braces, { to begin the variable name and } to end it. In the example above, username is the
variable name. At runtime, a resource configured to respond to the above URI path template
will attempt to process the URI data that corresponds to the location of {username} in the URI
as the variable data for username.

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/jerseybeans/{name1}/{name2}/, you must deploy the
WAR to a Java EE server that responds to requests to the http://example.com/myContextRoot
URI, and then decorate your resource with the following @Path annotation:

@Path("/{name1}/{name2}/")
public class SomeResource {

...

}

In this example, the URL pattern for the Jersey helper servlet, specified in web.xml, is the
default:

<servlet-mapping>

<servlet-name>My Jersey Bean Resource</servlet-name>

<url-pattern>/jerseybeans/*</url-pattern>

</servlet-mapping>

A variable name can be used more than once in the URI path template.

The @Path Annotation and URI Path Templates

Chapter 3 • Creating a RESTful Resource Class 17

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the
value of a variable should be substituted with %20.

Be careful when defining URI path templates that the resulting URI after substitution is valid.

The following table lists some examples of URI path template variables and how the URIs are
resolved after substitution. The following variable names and values are used in the examples:
■ name1:jay
■ name2: gatsby
■ name3:
■ location: Main%20Street
■ question: why

Note – The value of the name3 variable is an empty string.

TABLE 3–2 Examples of URI path templates

URI Path Template URI After Substitution

http://example.com/{name1}/{name2}/ http://example.com/jay/gatsby/

http://example.com/{question}/

{question}/{question}/

http://example.com/why/why/why/

http://example.com/maps/{location} http://example.com/maps/Main%20Street

http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Resources
The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT,
DELETE) to which the resource is responding.

The Request Method Designator Annotations
A request method designatorannotations are runtime annotations, defined by JAX-RS, and
which correspond to the similarly named HTTP methods. Within a resource class file, HTTP
methods are mapped to Java programming language methods using the request method
designator annotations. The behavior of a resource is determined by which of the HTTP
methods the resource is responding to. Jersey defines a set of request method designators for the
common HTTP methods: @GET, @POST, @PUT, @DELETE, @HEAD, but you can create your own
custom request method designators. Creating custom request method designators is outside the
scope of this document.

Responding to HTTP Resources

RESTful Web Services Developer's Guide • April 200918

The following example is an extract from the storage service sample that shows the use of the
PUTmethod to create or update a storage container.

@PUT

public Response putContainer() {

System.out.println("PUT CONTAINER " + container);

URI uri = uriInfo.getAbsolutePath();

Container c = new Container(container, uri.toString());

Response r;

if (!MemoryStore.MS.hasContainer(c)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

MemoryStore.MS.createContainer(c);

return r;

}

By default the JAX-RS runtime will automatically support the methods HEAD and OPTIONS if not
explicitly implemented. For HEAD, the runtime will invoke the implemented GET method (if
present) and ignore the response entity (if set). For OPTIONS, the Allow response header will be
set to the set of HTTP methods support by the resource. In addition Jersey will return a WADL
document describing the resource.

Methods decorated with request method designators must return void, a Java programming
language type, or a javax.ws.rs.core.Response object. Multiple parameters may be extracted
from the URI using the PathParam or QueryParam annotations as described in “Extracting
Request Parameters” on page 23. Conversion between Java types and an entity body is the
responsibility of an entity provider, such as MessageBodyReader or MessageBodyWriter.
Methods that need to provide additional metadata with a response should return an instance of
Response. The ResponseBuilder class provides a convenient way to create a Response instance
using a builder pattern. The HTTP PUT and POST methods expect an HTTP request body, so you
should use a MessageBodyReader for methods that respond to PUT and POST requests.

Using Entity Providers to Map HTTP Response and
Request Entity Bodies
Entity providers supply mapping services between representations and their associated Java
types. There are two types of entity providers: MessageBodyReader and MessageBodyWriter.
For HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to
method parameters. On the response side, a return value is mapped to an HTTP response entity
body using a MessageBodyWriter. If the application needs to supply additional metadata, such

Responding to HTTP Resources

Chapter 3 • Creating a RESTful Resource Class 19

https://wadl.dev.java.net/

as HTTP headers or a different status code, a method can return a Response that wraps the
entity, and which can be built using Response.ResponseBuilder.

The following list contains the standard types that are supported automatically for entities. You
only need to write an entity provider if you are not choosing one of the following, standard
types.
■ byte[] — All media types (*/*)
■ java.lang.String — All text media types (text/*)
■ java.io.InputStream — All media types (*/*)
■ java.io.Reader — All media types (*/*)
■ java.io.File — All media types (*/*)
■ javax.activation.DataSource — All media types (*/*)
■ javax.xml.transform.Source — XML types (text/xml, application/xml and

application/*+xml)
■ javax.xml.bind.JAXBElement and application-supplied JAXB classes XML media types

(text/xml, application/xml and application/*+xml)
■ MultivaluedMap<String, String> — Form content

(application/x-www-form-urlencoded)
■ StreamingOutput — All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @Consumes and
@Provider annotations:

@Consumes("application/x-www-form-urlencoded")
@Provider

public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @Produces and
@Provider annotations:

@Produces("text/html")
@Provider

public class FormWriter implements MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET

public Response getItem() {

System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);

if (i == null)

throw new NotFoundException("Item not found");

Responding to HTTP Resources

RESTful Web Services Developer's Guide • April 200920

Date lastModified = i.getLastModified().getTime();

EntityTag et = new EntityTag(i.getDigest());

ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

if (rb != null)

return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).

lastModified(lastModified).tag(et).build();

}

Using @Consumes and @Produces to Customize Requests and
Responses

The information sent to a resource and then passed back to the client is specified as a MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the
javax.ws.rs.Consumes and javax.ws.rs.Produces annotations.

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @ProducesAnnotation
The @Produces annotation is used to specify the MIME media types or representations a
resource can produce and send back to the client. If @Produces is applied at the class level, all
the methods in a resource can produce the specified MIME types by default. If it is applied at the
method level, it overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the Jersey
runtime sends back an HTTP “406 Not Acceptable” error.

The value of @Produces is an array of String of MIME types. For example:

@Produces({"image/jpeg,image/png"})

The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {

@GET

public String doGetAsPlainText() {

...

Using @Consumes and @Produces to Customize Requests and Responses

Chapter 3 • Creating a RESTful Resource Class 21

}

@GET

@Produces("text/html")
public String doGetAsHtml() {

...

}

}

The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation
at the class level. The doGetAsHtml method's @Produces annotation overrides the class-level
@Produces setting, and specifies that the method can produce HTML rather than plain text.

If a resource class is capable of producing more that one MIME media type, the resource
method chosen will correspond to the most acceptable media type as declared by the client.
More specifically, the Accept header of the HTTP request declared what is most acceptable. For
example if the Accept header is Accept: text/plain, the doGetAsPlainText method will be
invoked. Alternatively if the Accept header is Accept: text/plain;q=0.9, text/html, which
declares that the client can accept media types of text/plain and text/html, but prefers the
latter, then the doGetAsHtml method will be invoked.

More than one media type may be declared in the same @Produces declaration. The following
code example shows how this is done.

@Produces({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

...

}

The doGetAsXmlOrJson method will get invoked if either of the media types application/xml
and application/json are acceptable. If both are equally acceptable, then the former will be
chosen because it occurs first. The examples above refer explicitly to MIME media types for
clarity. It is possible to refer to constant values, which may reduce typographical errors. For
more information, see the constant field values of MediaType.

The @ConsumesAnnotation
The @Consumes annotation is used to specify which MIME media types of representations a
resource can accept, or consume, from the client. If @Consumes is applied at the class level, all the
response methods accept the specified MIME types by default. If @Consumes is applied at the
method level, it overrides any @Consumes annotations applied at the class level.

If a resource is unable to consume the MIME type of a client request, the Jersey runtime sends
back an HTTP “415 Unsupported Media Type” error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

Using @Consumes and @Produces to Customize Requests and Responses

RESTful Web Services Developer's Guide • April 200922

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html

@Consumes({"text/plain,text/html"})

The following example shows how to apply @Consumes at both the class and method levels:

@Path("/myResource")
@Consumes("multipart/related")
public class SomeResource {

@POST

public String doPost(MimeMultipart mimeMultipartData) {

...

}

@POST

@Consumes("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

...

}

}

The doPost method defaults to the MIME media type of the @Consumes annotation at the class
level. The doPost2 method overrides the class level @Consumes annotation to specify that it can
accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 error
(Unsupported Media Type) is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the cliched
message using @Consumes, as shown in the following code example.

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

In this example, the Java method will consume representations identified by the MIME media
type text/plain. Notice that the resource method returns void. This means no representation
is returned and response with a status code of HTTP 204 (No Content) will be returned.

Extracting Request Parameters
Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @PathParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path. There are six types of parameters you can extract for use in
your resource class: query parameters, URI path parameters, form parameters, cookie
parameters, header parameters, and matrix parameters.

Extracting Request Parameters

Chapter 3 • Creating a RESTful Resource Class 23

Query parameters are extracted from the request URI query parameters, and are specified by
using the javax.ws.rs.QueryParam annotation in the method parameter arguments. The
following example (from the sparklines sample application) demonstrates using @QueryParam
to extract query parameters from the Query component of the request URL.

@Path("smooth")
@GET

public Response smooth(

@DefaultValue("2") @QueryParam("step") int step,

@DefaultValue("true") @QueryParam("min-m") boolean hasMin,

@DefaultValue("true") @QueryParam("max-m") boolean hasMax,

@DefaultValue("true") @QueryParam("last-m") boolean hasLast,

@DefaultValue("blue") @QueryParam("min-color") ColorParam minColor,

@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,

@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor

) { ... }

If a query parameter "step" exists in the query component of the request URI, then the "step"
value will be extracted and parsed as a 32–bit signed integer and assigned to the step method
parameter. If "step" does not exist, then a default value of 2, as declared in the @DefaultValue
annotation, will be assigned to the step method parameter. If the "step" value cannot be parsed
as a 32–bit signed integer, then an HTTP 400 (Client Error) response is returned.

User-defined Java types such as ColorParam may be used. The following code example shows
how to implement this.

public class ColorParam extends Color {

public ColorParam(String s) {

super(getRGB(s));

}

private static int getRGB(String s) {

if (s.charAt(0) == ’#’) {

try {

Color c = Color.decode("0x" + s.substring(1));

return c.getRGB();

} catch (NumberFormatException e) {

throw new WebApplicationException(400);

}

} else {

try {

Field f = Color.class.getField(s);

return ((Color)f.get(null)).getRGB();

} catch (Exception e) {

throw new WebApplicationException(400);

}

}

Extracting Request Parameters

RESTful Web Services Developer's Guide • April 200924

}

}

@QueryParam and @PathParam can only be used on the following Java types:

■ All primitive types except char
■ All wrapper classes of primitive types except Character
■ Have a constructor that accepts a single String argument
■ Any class with the static method named valueOf(String) that accepts a single String

argument
■ Any class with a constructor that takes a single String as a parameter
■ List<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes

parameters may contain more than one value for the same name. If this is the case, these
types may be used to obtain all values.

If @DefaultValue is not used in conjunction with @QueryParam, and the query parameter is not
present in the request, then value will be an empty collection for List, Set, or SortedSet; null
for other object types; and the Java-defined default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond
to the URI path template variable names specified in the @Path class-level annotation. URI
parameters are specified using the javax.ws.rs.PathParam annotation in the method
parameter arguments. The following example shows how to use @Path variables and the
@PathParam annotation in a method:

@Path("/{userName}")
public class MyResourceBean {

...

@GET

public String printUserName(@PathParam("userName") String userId) {

...

}

}

In the above snippet, the URI path template variable name userName is specified as a parameter
to the printUserName method. The @PathParam annotation is set to the variable name
userName. At runtime, before printUserName is called, the value of userName is extracted from
the URI and cast to a String. The resulting String is then available to the method as the userId
variable.

If the URI path template variable cannot be cast to the specified type, the Jersey runtime returns
an HTTP 400 Bad Request error to the client. If the @PathParam annotation cannot be cast to
the specified type, the Jersey runtime returns an HTTP 404 Not Found error to the client.

The @PathParam parameter and the other parameter-based annotations, @MatrixParam,
@HeaderParam, @CookieParam, and @FormParam obey the same rules as @QueryParam.

Extracting Request Parameters

Chapter 3 • Creating a RESTful Resource Class 25

Cookie parameters (indicated by decorating the parameter with javax.ws.rs.CookieParam)
extract information from the cookies declared in cookie-related HTTP headers. Header
parameters (indicated by decorating the parameter with javax.ws.rs.HeaderParam) extracts
information from the HTTP headers. Matrix parameters (indicated by decorating the
parameter with javax.ws.rs.MatrixParam) extracts information from URL path segments.
These parameters are beyond the scope of this tutorial.

Form parameters (indicated by decorating the parameter with javax.ws.rs.FormParam)
extract information from a request representation that is of the MIME media type
application/x-www-form-urlencoded and conforms to the encoding specified by HTML
forms, as described here. This parameter is very useful for extracting information that is
POSTed by HTML forms. The following example extracts the form parameter named "name"
from the POSTed form data.

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(@FormParam("name") String name) {

// Store the message

}

If it is necessary to obtain a general map of parameter names to values, use code such as that
shown in the following example , for query and path parameters.

@GET

public String get(@Context UriInfo ui) {

MultivaluedMap<String, String> queryParams = ui.getQueryParameters();

MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

Or code such as the following for header and cookie parameters:

@GET

public String get(@Context HttpHeaders hh) {

MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();

Map<String, Cookie> pathParams = hh.getCookies();

}

In general @Context can be used to obtain contextual Java types related to the request or
response.

For form parameters it is possible to do the following:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(MultivaluedMap<String, String> formParams) {

// Store the message

}

Extracting Request Parameters

RESTful Web Services Developer's Guide • April 200926

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

Overview of JAX-RS and Jersey: Further Information
The following documents contain information that you might find useful when creating
applications using Jersey and JAX-RS.

■ Overview of JAX-RS 1.0 Features
This document contains some of the information from this tutorial, as well as additional
topics such as Representations and Java types, Building Responses, Sub-resources, Building
URIs, WebApplicationException and mapping Exceptions to Responses, Conditional GETs
and Returning 304 (Not Modified) Responses, Life-cycle of root resource classes, Security,
Rules of Injection, Use of @Context, and APIs defined by JAX-RS.

■ Overview of Jersey 1.0 Features
This document contains the following topics: Deployment, Web-Deployment Using
Servlet, Embedded-Web-Deployment Using GlassFish, Embedded-Deployment Using
Grizzly, Embedded-Web-Deployment Using Grizzly, Client-Side API, Client-Side Filters,
Integration with Spring, JSON, JAXB, Module View Controller with JSPs, Resource Class
Life-Cycle, Resource Class Instantiation, Web Application Description Language (WADL)
Support, Pluggable Templates for Model View Controller, Server-Side Filters URI utilities,
Web Application Reloading, Pluggable Injection, Pluggable Life-Cycle, Pluggable HTTP
containers, and Pluggable IoC Integration.

Overview of JAX-RS and Jersey: Further Information

Chapter 3 • Creating a RESTful Resource Class 27

http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features
http://wikis.sun.com/display/Jersey/Overview+of+Jersey+1.0+Features

28

Creating, Deploying, and Running Jersey
Applications

This chapter provides an introduction to creating, deploying, and running your own Jersey
applications. This section demonstrates the steps that you would take to create, build, deploy,
and run a very simple web application that is annotated with Jersey.

Another way that you could learn more about deploying and running Jersey applications is to
review the many sample applications that ship with Jersey. When you install the Jersey add-on
to GlassFish, these samples are installed into the as-install/jersey/samples directory. If you
have installed Jersey in another way, read the section “Installing and Running the Jersey Sample
Applications” on page 10 for information on how to download the sample applications. There is
a README.html file for each sample that describes the sample and describes how to deploy and
test the sample, and there is a Project Object Model file, pom.xml, that is used by Maven to build
the project.

Note – For GlassFish v3 Prelude release only, Jersey-based applications that use the JSP Views
feature need to bundle the Jersey JAR files with the application WAR file. An example of how
this is done can be found in the bookstore sample application.

Using NetBeans to Create Jersey Applications
This section gives a simple introduction to using Jersey in NetBeans.

▼ Creating a Jersey-Annotated Web Application using
NetBeans IDE
This section describes, using a very simple example, how to create a Jersey-annotated web
application.

4C H A P T E R 4

29

Before you can deploy a Jersey application using NetBeans, you must have installed the RESTful
Web Services plugin, as described in “Installing Jersey in NetBeans” on page 10.

In NetBeans IDE, create a simple web application. For this example, we will work with a very
simple“Hello, World”web application.

a. Open NetBeans IDE.

b. Select File→New Project.

c. From Categories, select Java Web. From Projects, select Web Application. Click Next.

d. Enter a project name, HelloWorldApp, click Next.

e. Make sure the Server is GlassFish v3 Prelude.

f. Click Finish.

The project will be created. The file index.jspwill display in the Source pane.

Right-click the project and select New, then select RESTful Web Services from Patterns.

a. Select Singleton to use as a design pattern. Click Next.

b. Enter a Resource Package name, like HelloWorldResource. For MIME Type select text/html.

c. Enter /helloworld in the Path field. Enter HelloWorld in the Resource Name field.

d. Click Finish.
A new resource, HelloWorldResource.java, is added to the project and displays in the
Source pane.

In HelloWorldResource.java, modify or add code to resemble the following example.
/**

* Retrieves representation of an instance of helloworld.HellowWorldResource

* @return an instance of java.lang.String

*/

@GET

@Produces("text/html")
public String getXml() {

return "<html><body><h1>Hello World!</body></h1></html>";
}

/**

* PUT method for updating or creating an instance of HelloWorldResource

Before You Begin

1

2

3

4

Using NetBeans to Create Jersey Applications

RESTful Web Services Developer's Guide • April 200930

* @param content representation for the resource

* @return an HTTP response with content of the updated or created resource.

*/

@PUT

@Consumes("application/xml")
public void putXml(String content) {

}

▼ Deploying and Testing a Jersey Application using
NetBeans IDE
This section describes building, deploying, and testing a Jersey-annotated application using
NetBeans IDE.

Right-click the project node and click Test RESTful Web Services.
This step will deploy the application and bring up a test client in the browser.

When the test client displays, navigate to the helloworld resource and click the Test button.
The words Hello World! will display in the Response window.

For other sample applications that demonstrate deploying and running Jersey applications
using NetBeans, read “Building and Running the HelloWorld-WebApp Application in
NetBeans” on page 37, “Building and Running the Bookstore Application from NetBeans IDE”
on page 51, or look at the tutorials on the NetBeans tutorial site, such as the one titled Getting
Started with RESTful Web Services: NetBeans 6.5. This tutorial includes a section on creating a
CRUD application from a database.

Deploying and Testing a Jersey Application Without NetBeans
The following sections describes how to deploy and run a Jersey application without using the
NetBeans IDE. This example describes copying and editing an existing Jersey sample
application. An example that starts from scratch can be found here.

▼ Deploying and Testing a Jersey Application without
NetBeans
The easiest way to create and run an application without NetBeans is to copy and edit one of the
Jersey sample applications. We'll use the simplest sample application, HelloWorld, to
demonstrate one way you could go about creating your own application without NetBeans IDE.

1

2

See Also

Deploying and Testing a Jersey Application Without NetBeans

Chapter 4 • Creating, Deploying, and Running Jersey Applications 31

http://www.netbeans.org/kb/docs/websvc/rest.html
http://www.netbeans.org/kb/docs/websvc/rest.html
https://jersey.dev.java.net/source/browse/*checkout*/jersey/tags/jersey-1.0/jersey/getting-started.html

Before you can deploy an application to GlassFish from the command line, you must have
downloaded and installed Jersey onto GlassFish, as described in “Adding Jersey to GlassFish” on
page 9.

Copy the HelloWorld application to a new directory named helloworld2.

Do a search for all directories named helloworld and rename them to helloworld2.

Search again for all files containing the text helloworld and edit these files to replace this text
with helloworld2.

Using a text editor, open the file
jersey/samples/helloworld2/src/main/java/com/sun/jersey/samples/helloworld/resources/HelloWorldResource.j

Modify the text that is returned by the resource to Hello World 2. Save and close the file.

Use Maven to compile and deploy the application. For this sample application, it is deployed
onto Grizzly. Enter the following command from the command line to compile and deploy the
application: mvn compile exec:java.

Open a web browser, and enter the URL to which the application was deployed, which in this
examples is http://localhost:9998/helloworld2. Hello World 2 will display in the browser.

You can learn more about deploying and running Jersey applications by reviewing the many
sample applications that ship with Jersey. There is a README.html file for each sample that
describes the sample and describes how to deploy and test the sample, and there is a Project
Object Model file, pom.xml, that is used by Maven to build the project. Find a project that is
similar to one you are hoping to create and use it as a template to get you started.

An example that starts from scratch can be found here.

For questions regarding Jersey sample applications, visit the Jersey Community Wiki page, or
send an email to the users mailing list, users@jersey.dev.java.net.

Deploying a RESTful Web Service
This section is taken from the document titled Overview of JAX-RS 1.0 Features.

JAX-RS provides the deployment-agnostic abstract class Application for declaring root
resource classes and root resource singleton instances. A Web service may extend this class to
declare root resource classes, as shown in the following code example.

public class MyApplicaton extends Application {

public Set<Class<?>> getClasses() {

Set<Class<?>> s = new HashSet<Class<?>>();

Before You Begin

1

2

3

4

5

6

7

See Also

Deploying and Testing a Jersey Application Without NetBeans

RESTful Web Services Developer's Guide • April 200932

https://jersey.dev.java.net/source/browse/*checkout*/jersey/tags/jersey-1.0/jersey/getting-started.html
http://wikis.sun.com/display/Jersey/Main
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features#OverviewofJAX-RS1.0Features-DeployingaRESTfulWebservice
https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/Application.html

s.add(HelloWorldResource.class);

return s;

}

}

Alternatively, it is possible to reuse a Jersey implementation that scans for root resource classes
given a classpath or a set of package names. Such classes are automatically added to the set of
classes that are returned by the getClasses method. For example, the following code example
scans for root resource classes in packages org.foo.rest, org.bar.rest, and in any their
sub-packages.

public class MyApplication extends PackagesResourceConfig {

public MyApplication() {

super("org.foo.rest;org.bar.rest");
}

}

For servlet deployments, JAX-RS specifies that a class that implements Application may be
declared instead of a servlet class in the <server-class> element of the application deployment
descriptor, web.xml. As of this writing, this is not currently supported for Jersey. Instead it is
necessary to declare the Jersey-specific servlet and the Application class, as shown in the
following code example.

<web-app>

<servlet>

<servlet-name>Jersey Web Application</servlet-name>

<servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>

<init-param>

<param-name>javax.ws.rs.Application</param-name>

<param-value>MyApplication</param-value>

</init-param>

</servlet>

....

An even simpler approach is to let Jersey choose the PackagesResourceConfig implementation
automatically by declaring the packages as shown in the following code.

<web-app>

<servlet>

<servlet-name>Jersey Web Application</servlet-name>

<servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>

<init-param>

<param-name>com.sun.jersey.config.property.packages</param-name>

<param-value>org.foo.rest;org.bar.rest</param-value>

</init-param>

</servlet>

....

Deploying and Testing a Jersey Application Without NetBeans

Chapter 4 • Creating, Deploying, and Running Jersey Applications 33

JAX-RS also provides the ability to obtain a container-specific artifact from an Application

instance. In the following code example, Jersey supports using Grizzly.

SelectorThread st =

RuntimeDelegate.createEndpoint(new MyApplication(),

SelectorThread.class);

Jersey also provides Grizzly helper classes to deploy the ServletThread instance at a base URL
for in-process deployment. The Jersey samples provide many examples of servlet-based and
Grizzly-in-process-based deployments.

Deploying and Testing a Jersey Application Without NetBeans

RESTful Web Services Developer's Guide • April 200934

Jersey Sample Applications

This chapter discusses some sample applications that demonstrate how to create and use the
Jersey annotations in your application. When you install the Jersey add-on to GlassFish, these
samples are installed into the as-install/jersey/samples directory. If you have installed Jersey
in another way, read the section “Installing and Running the Jersey Sample Applications” on
page 10 for information on how to download the sample applications.

The Jersey Sample Applications
All of the Jersey sample applications can be executed from the command line or from NetBeans
IDE 6.5 using at least Maven version 2.0.9. Maven makes it easy to distribute the samples
without redistributing third-party dependencies, which can be very large.

There are three samples included in the tutorial that demonstrate how to create and use
resources. They are:

■ HelloWorld-WebApp is a simple “Hello, world” sample that responds to HTTP GET requests.
■ Storage-Service demonstrates a simple, in-memory, web storage service.
■ Bookstore demonstrates how to connect JSP pages to resources.

Configuring Your Environment
To run the sample applications, you must install Jersey onto either GlassFish v3 Prelude or
NetBeans IDE 6.5, and you need to install and configure Maven. Here are the links to more
information on these topics.

■ Installing Jersey onto GlassFish v3 Prelude. This task is described in “Adding Jersey to
GlassFish” on page 9.

5C H A P T E R 5

35

■ Installing Jersey as part of the NetBeans Web and Java EE pack, or by installing Jersey as a
separate plugin to NetBeans IDE 6.5. This task is described in “Installing Jersey in NetBeans”
on page 10.

■ Installing Maven to run the sample applications. This task is described in “Running the
Jersey Examples” on page 10.

The HelloWorld-WebApp Application
This section discusses the HelloWorld-WebApp application that ships with Jersey. The
HelloWorld-WebApp application is a “Hello, world” application that demonstrates the basics of
developing a resource. There is a single class, HelloWorldResource that contains one method,
getClichedMessage that produces a textual response to an HTTP GET request with a greeting
that is sent back as plain text.

Annotating the Resource Class
The following code is the contents of the
com.sun.jersey.samples.helloworld.resources.HelloWorldResource class:

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

@Path("/helloworld")
public class HelloWorldResource {

@GET

@Produces("text/plain")
public String getClichedMessage() {

return "Hello World";
}

}

In this example, the following annotations are processed at runtime:

■ The @Path annotation specifies that the Java class will be hosted at the URI path
/helloworld.

■ The @GET annotation specifies that the Java method will process HTTP GET requests.
■ The @Produces annotation specifies that the Java method will produce content identified by

the MIME media type text/plain.

The HelloWorld-WebApp Application

RESTful Web Services Developer's Guide • April 200936

Configuring the Resource with the Runtime
The helloworld-webapp/src/main/webapp/WEB-INF/web.xml deployment descriptor for
HelloWorld-Webappcontains the settings for configuring your resource with the JAX-RS API
runtime:

<servlet>

<servlet-name>Jersey Web Application</servlet-name>

<servlet-class>

com.sun.jersey.spi.container.servlet.ServletContainer

</servlet-class>

<init-param>

<param-name>

com.sun.jersey.config.property.packages

</param-name>

<param-value>

com.sun.jersey.samples.helloworld.resources

</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Jersey Web Application</servlet-name>

<url-pattern>/*</url-pattern>

</servlet-mapping>

The com.sun.jersey.spi.container.servlet.ServletContainer servlet is part of the
JAX-RS API runtime, and works with the generated HelloWorldResource class to get the
resources provided by your application. The <servlet-mapping> elements specify which URLs
your application responds to relative to the context root of your WAR. Both the context root
and the specified URL pattern prefix the URI Template specified in the @Path annotation in the
resource class file. In the case of the HelloWorld-WebApp sample application, @Path is set to
/helloworld, the URL pattern is set to the wild card character, and the context root specified in
sun-web.xml is /helloworld-webapp, so the resource will respond to requests of the form:

http://<server>:<server port>/helloworld-webapp/helloworld

▼ Building and Running the HelloWorld-WebApp
Application in NetBeans

Make sure that Maven is installed and configured, as described in “Running the Jersey
Examples”on page 10.

Select File→Open Project in NetBeans IDE 6.5.

1

2

The HelloWorld-WebApp Application

Chapter 5 • Jersey Sample Applications 37

Navigate to jersey/samples, select HelloWorld-WebApp, and click OK.

Right click the HelloWorld-WebApp project in the Projects pane and select Run.
This will generate the helper classes and artifacts for your resource, compile the classes, package
the files into a WAR file, and deploy the WAR to your GlassFish instance.

If a web browser doesn't open automatically to display the output, you may need to open a web
browser and enter the URL for the application.
http://localhost:8080/helloworld-webapp/helloworld

You will see the following output in your web browser:

Hello World

▼ Building and Running the HelloWorld-WebApp
Application with Maven

Make sure that Maven is installed and configured, as described in “Running the Jersey
Examples”on page 10.

Open a terminal prompt and navigate to jersey.home/samples/HelloWorld-WebApp.

Enter mvn glassfish:run and press Enter.
This will build, package, deploy, and run the web application. It will also start GlassFish if it is
not running.

In a web browser navigate to:
http://localhost:8080/helloworld-webapp/helloworld

You will see the following output in your web browser:

Hello World

The Storage-Service Application
The Storage-Service sample application demonstrates a simple, in-memory, web storage
service and test code using the Jersey client API. The web storage service enables clients to
create and delete containers. Containers are used to create, read, update, and delete items of
arbitrary content, and to search for items containing certain content. A container can be
thought of as a hash map of items. The key for the item is specified in the request URI. There are
three web resources that are shown below.

3

4

5

1

2

3

4

The Storage-Service Application

RESTful Web Services Developer's Guide • April 200938

The web storage service ensures that content can be cached (by browsers and proxies) by
supporting the HTTP features Last-Modified and ETag. The sample consists of three web
resources implemented by the classes described in the following paragraphs.

Note – Two of the resource classes have similar names. ContainersResource (plural) and
ContainerResource (singular).

Understanding the Web Resource Classes for the
Storage-Service Example
The first resource class,
com.sun.jersey.samples.storageservice.resources.ContainersResource, provides
metadata information on the containers. This resource references the ContainerResource
resource using the @Path annotation declared on the
ContainersResource.getContainerResource method. The following code is extracted from
ContainersResource.java:

@Path("/containers")
@Produces("application/xml")
public class ContainersResource {

@Context UriInfo uriInfo;

@Context Request request;

@Path("{container}")
public ContainerResource getContainerResource(@PathParam("container")

String container) {

return new ContainerResource(uriInfo, request, container);

}

@GET

public Containers getContainers() {

System.out.println("GET CONTAINERS");

return MemoryStore.MS.getContainers();

}

}

Another resource class ,
com.sun.jersey.samples.storageservice.resources.ContainerResource, provides for
reading, creating, and deleting of containers. You can search for items in the container using a
URI query parameter. The resource dynamically references the ItemResource resource class
using the getItemResource method that is annotated with @Path. The following code is
extracted from ContainerResource.java:

The Storage-Service Application

Chapter 5 • Jersey Sample Applications 39

@Produces("application/xml")
public class ContainerResource {

@Context UriInfo uriInfo;

@Context Request request;

String container;

ContainerResource(UriInfo uriInfo, Request request, String container) {

this.uriInfo = uriInfo;

this.request = request;

this.container = container;

}

@GET

public Container getContainer(@QueryParam("search") String search) {

System.out.println("GET CONTAINER " + container + ", search = " + search);

Container c = MemoryStore.MS.getContainer(container);

if (c == null)

throw new NotFoundException("Container not found");

if (search != null) {

c = c.clone();

Iterator<Item> i = c.getItem().iterator();

byte[] searchBytes = search.getBytes();

while (i.hasNext()) {

if (!match(searchBytes, container, i.next().getName()))

i.remove();

}

}

return c;

}

@PUT

public Response putContainer() {

System.out.println("PUT CONTAINER " + container);

URI uri = uriInfo.getAbsolutePath();

Container c = new Container(container, uri.toString());

Response r;

if (!MemoryStore.MS.hasContainer(c)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

The Storage-Service Application

RESTful Web Services Developer's Guide • April 200940

MemoryStore.MS.createContainer(c);

return r;

}

@DELETE

public void deleteContainer() {

System.out.println("DELETE CONTAINER " + container);

Container c = MemoryStore.MS.deleteContainer(container);

if (c == null)

throw new NotFoundException("Container not found");
}

@Path("{item: .+}")
public ItemResource getItemResource(@PathParam("item") String item) {

return new ItemResource(uriInfo, request, container, item);

}

private boolean match(byte[] search, String container, String item) {

byte[] b = MemoryStore.MS.getItemData(container, item);

OUTER: for (int i = 0; i < b.length - search.length; i++) {

for (int j = 0; j < search.length; j++) {

if (b[i + j] != search[j])

continue OUTER;

}

return true;

}

return false;

}

}

The last resource class discussed in this sample,
com.sun.jersey.samples.storageservice.resources.ItemResource, provides for reading,
creating, updating, and deleting of an item. The last modified time and entity tag are supported
in that it conditionally returns content only if the browser or proxy has an older version of the
content. The following code is extracted from ItemResource.java:

public class ItemResource {

UriInfo uriInfo;

Request request;

String container;

String item;

public ItemResource(UriInfo uriInfo, Request request,

The Storage-Service Application

Chapter 5 • Jersey Sample Applications 41

String container, String item) {

this.uriInfo = uriInfo;

this.request = request;

this.container = container;

this.item = item;

}

@GET

public Response getItem() {

System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);

if (i == null)

throw new NotFoundException("Item not found");
Date lastModified = i.getLastModified().getTime();

EntityTag et = new EntityTag(i.getDigest());

ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

if (rb != null)

return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).

lastModified(lastModified).tag(et).build();

}

@PUT

public Response putItem(

@Context HttpHeaders headers,

byte[] data) {

System.out.println("PUT ITEM " + container + " " + item);

URI uri = uriInfo.getAbsolutePath();

MediaType mimeType = headers.getMediaType();

GregorianCalendar gc = new GregorianCalendar();

gc.set(GregorianCalendar.MILLISECOND, 0);

Item i = new Item(item, uri.toString(), mimeType.toString(), gc);

String digest = computeDigest(data);

i.setDigest(digest);

Response r;

if (!MemoryStore.MS.hasItem(container, item)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

Item ii = MemoryStore.MS.createOrUpdateItem(container, i, data);

if (ii == null) {

The Storage-Service Application

RESTful Web Services Developer's Guide • April 200942

// Create the container if one has not been created

URI containerUri = uriInfo.getAbsolutePathBuilder().path("..").
build().normalize();

Container c = new Container(container, containerUri.toString());

MemoryStore.MS.createContainer(c);

i = MemoryStore.MS.createOrUpdateItem(container, i, data);

if (i == null)

throw new NotFoundException("Container not found");
}

return r;

}

@DELETE

public void deleteItem() {

System.out.println("DELETE ITEM " + container + " " + item);

Item i = MemoryStore.MS.deleteItem(container, item);

if (i == null) {

throw new NotFoundException("Item not found");
}

}

private String computeDigest(byte[] content) {

try {

MessageDigest md = MessageDigest.getInstance("SHA");
byte[] digest = md.digest(content);

BigInteger bi = new BigInteger(digest);

return bi.toString(16);

} catch (Exception e) {

return "";
}

}

}

The mapping of the URI path space is shown in the following table.

TABLE 5–1 URI Path Space for Storage-Service Example

URI Path Resource Class HTTP Methods

/containers ContainersResource GET

/containers/{container} ContainerResource GET, PUT, DELETE

/containers/{container}/{item} ItemResource GET, PUT, DELETE

The Storage-Service Application

Chapter 5 • Jersey Sample Applications 43

▼ Building and Running the Storage-Service Application
from the Command Line

Make sure that Maven is installed and configured, as described in “Running the Jersey
Examples”on page 10.

Open a terminal prompt and navigate to jersey.home/samples/storage-service.

To run the sample, enter mvn clean compile exec:java and press Enter.

This will build, package, and deploy the web storage service using Grizzly, an HTTP web server.

Tip – To run the application on GlassFish, copy the classes from the example into sources of the
web application. Then, create a web.xml file that uses the Jersey servlet. The Java classes are not
dependent on a particular container.

To view the Web Application Description Language file (the WADL), open a web browser and
navigate to:
http://localhost:9998/storage/application.wadl

The WADL description in also shown in this document at “Example: The Storage-Service
WADL” on page 47

Leave the terminal window open, and open a new terminal window to continue with exploring
this sample.

▼ Exploring the Storage-Service Example
Once the service is deployed, it is a good idea to see how it works by looking at the contents of
the containers, creating a container, adding content to the container, looking at the date and
time stamp for the items in the container, searching for content in the containers, modifying
content of an item in the containers, deleting an item from the container, and deleting the
container. To accomplish these tasks, use the cURL command line tool, as shown in the
following steps. cURL is a command line tool for transferring files with URL syntax.

To show which containers currently exist, open a new terminal prompt and enter the following
command. This command will henceforth be referred to as the GET command.

curl http://127.0.0.1:9998/storage/containers

The response is in XML format. Because there are no containers present, the response is an
empty containers element.

1

2

3

4

5

1

The Storage-Service Application

RESTful Web Services Developer's Guide • April 200944

https://grizzly.dev.java.net/
http://curl.haxx.se/

To create a container, enter the following at the terminal prompt:
curl -X PUT http://127.0.0.1:9998/storage/containers/quotes

This step creates a container called quotes. If you run the GET command from the previous
step again, it will return information in XML format showing that a container named quotes

exists at the URI http://127.0.0.1:9998/storage/containers/quotes.

Create some content in the quotes container. The following example shows how to do this from
the terminal prompt:
curl -X PUT -HContent-type:text/plain --data

"Something is rotten in the state of Denmark"
http://127.0.0.1:9998/storage/containers/quotes/1

curl -X PUT -HContent-type:text/plain --data

"I could be bounded in a nutshell"
http://127.0.0.1:9998/storage/containers/quotes/2

curl -X PUT -HContent-type:text/plain --data

"catch the conscience of the king"
http://127.0.0.1:9998/storage/containers/quotes/3

curl -X PUT -HContent-type:text/plain --data

"Get thee to a nunnery"
http://127.0.0.1:9998/storage/containers/quotes/4

If you run the GET command again with /quotes at the end (curl
http://127.0.0.1:9998/storage/containers/quotes), it will return information in XML
format that show that the quotes container contains 4 items. For each item, the following
information is displayed: digest, date last modified, MIME type, item name (also referred to as
its key), and URI address. For example, the listing for the first item looks like this:

<item>

<digest>7a54c57975de11bffcda5bc6bd92a0460d17ad03</digest>

<lastModified>2008-10-10T15:011:48+01:00</lastModified>

<mimeType>text/plain</mimeType>

<name>1</name>

<uri>http://127.0.0.1:9998/storage/containers/quotes/1</uri>

</item>

You can search for information within the contents of the quotes container. For example, the
following command would search for the String king.
curl "http://127.0.0.1:9998/storage/containers/quotes?search=king"

This returns the information for the item that contains the text, similar to that shown in the
previous step, but not the text itself. The next step shows how to see the contents of the item
containing the text king.

To get the contents of the item containing the text you found using the search, use the following
command:
curl http://127.0.0.1:9998/storage/containers/quotes/3

2

3

4

5

The Storage-Service Application

Chapter 5 • Jersey Sample Applications 45

This step returns the contents of item 3, which is the quote catch the conscience of the
king.

To delete an item from the container, use the following command:
curl -X DELETE http://127.0.0.1:9998/storage/containers/quotes/3

To delete an item from the container, use the following command:
curl -X DELETE http://127.0.0.1:9998/storage/containers/quotes/3

You can use the GET command to verify that item 3 has been removed.

To delete the entire quotes container, use the following command:
curl -X DELETE http://127.0.0.1:9998/storage/containers/quotes

You can use the GET command to verify that the container has been removed.

For a discussion of the caching of HTTP requests and responses, look at the
as-install/jersey/samples/Storage-Service/README.html file.
If you go back to the terminal window that is running the web storage service, you will see the
history of HTTP requests and responses, which will look something like this:
GET CONTAINERS

PUT CONTAINER quotes

GET CONTAINERS

PUT ITEM quotes 1

PUT ITEM quotes 2

PUT ITEM quotes 3

PUT ITEM quotes 4

GET CONTAINER quotes, search = null

PUT ITEM quotes 4

PUT ITEM quotes 4

GET CONTAINER quotes, search = king

DELETE ITEM quotes 3

GET CONTAINER quotes, search = null

DELETE CONTAINER quotes

GET CONTAINER quotes, search = null

GET CONTAINERS

Extending the Storage-Service Example
This example demonstrates storing and returning plain text strings. This example can easily be
modified to store and return arbitrary binary data, for example, images. You can easily store any
piece of data with any media type. All you have to do is, in the examples in the previous section,
change the text/plain parameter to image/jpeg, or some other value, and point to a JPEG file.
For example, to create some content that is a JPEG file, you could use the following curl
command.

6

7

8

9

The Storage-Service Application

RESTful Web Services Developer's Guide • April 200946

curl -X PUT -HContent-type:image/jpeg --data

/home/jersey_logo.jpg

http://127.0.0.1:9998/storage/containers/images/1

To retrieve the contents of the item containing the image, use the following command:

curl http://127.0.0.1:9998/storage/containers/images/1

Example: The Storage-Service WADL
This is the Web Application Description Language file (the WADL) that is generated for the
storage-service sample application:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">

<doc xmlns:jersey="http://jersey.dev.java.net/"
jersey:generatedBy="Jersey: 1.0-ea-SNAPSHOT 10/02/2008 12:17 PM"/>

<resources base="http://localhost:9998/storage/">
<resource path="/containers">

<method name="GET" id="getContainers">
<response>

<representation mediaType="application/xml"/>
</response>

</method>

<resource path="{container}">
<param xmlns:xs="http://www.w3.org/2001/XMLSchema"

type="xs:string" style="template" name="container"/>
<method name="PUT" id="putContainer">

<response>

<representation mediaType="application/xml"/>
</response>

</method>

<method name="DELETE" id="deleteContainer"/>
<method name="GET" id="getContainer">

<request>

<param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="query" name="search"/>

</request>

<response>

<representation mediaType="application/xml"/>
</response>

</method>

<resource path="{item: .+}">
<param xmlns:xs="http://www.w3.org/2001/XMLSchema"

type="xs:string" style="template" name="item"/>
<method name="PUT" id="putItem">

<request>

The Storage-Service Application

Chapter 5 • Jersey Sample Applications 47

<representation mediaType="*/*"/>
</request>

<response>

<representation mediaType="*/*"/>
</response>

</method>

<method name="DELETE" id="deleteItem"/>
<method name="GET" id="getItem">

<response>

<representation mediaType="*/*"/>
</response>

</method>

</resource>

</resource>

</resource>

</resources>

</application>

The Bookstore Application
The Bookstore web application shows how to connect JSP pages to resources. The Bookstore
web application presents books, CDs, and tracks from CDs. The sample application consists of
five web resources, described and outlined in the following section.

This sample demonstrates how to support polymorphism of resources and JSP pages, which
means that it allows values of different data types to be handled using a uniform interface. The
use of polymorphism makes it possible to add another resource, such as a DVD resource with
associated JSP pages, which would extend Item without having to change the logic of
Bookstore or any of the existing JSP pages.

Web Resources for Bookstore Application
The Bookstore resource returns a list of items, either CDs or books. The resource dynamically
references a Book or CD resource using the getItem method that is annotated with @Path. Both
the Book and CD resources inherit from the Item class, therefore, the item can be managed
polymorphically.

The following snippet of code from
com.sun.jersey.samples.bookstore.resources.Bookstore.java adds some items to the
bookstore application and, using a URI path template to pass in the item ID, provides a method
for retrieving the item.

@Path("/")
@Singleton

public class Bookstore {

The Bookstore Application

RESTful Web Services Developer's Guide • April 200948

private final Map<String, Item> items = new TreeMap<String, Item>();

private String name;

public Bookstore() {

setName("Czech Bookstore");
getItems().put("1", new Book("Svejk", "Jaroslav Hasek"));
getItems().put("2", new Book("Krakatit", "Karel Capek"));
getItems().put("3", new CD("Ma Vlast 1", "Bedrich Smetana", new Track[]{

new Track("Vysehrad",180),
new Track("Vltava",172),
new Track("Sarka",32)}));

}

@Path("items/{itemid}/")
public Item getItem(@PathParam("itemid") String itemid) {

Item i = getItems().get(itemid);

if (i == null)

throw new NotFoundException("Item, " + itemid + ", is not found");

return i;

}

. . .

}

Both the Book and the CD resources inherit from the Item class. This allows the resources to be
managed polymorphically. The Book resource has a title and an author. The CD resource has a
title, author, and list of tracks. The Track resource has a name and a track length.

The following code snippet from the CD resource dynamically references the Track resource
using the getTrack method that is annotated with @Path.

public class CD extends Item {

private final Track[] tracks;

public CD(final String title, final String author, final Track[] tracks) {

super(title, author);

this.tracks = tracks;

}

public Track[] getTracks() {

return tracks;

}

@Path("tracks/{num}/")
public Track getTrack(@PathParam("num") int num) {

if (num >= tracks.length)

The Bookstore Application

Chapter 5 • Jersey Sample Applications 49

throw new NotFoundException("Track, " + num + ",
of CD, " + getTitle() + ", is not found");

return tracks[num];

}

}

Mapping the URI Path in the Bookstore Example
JSP pages are associated with resource classes. These JSP pages are resolved by converting the
fully-qualified class name of the resource class into a path and appending the last path segment
of the request URI path to that path. For example, when a GET is performed on the URI path
"/", the path to the JSP page is
/com/sun/jersey/samples/bookstore/resources/Bookstore/. For this example, since the
last path segment is empty, index.jsp is appended to the path. The request then gets forwarded
to the JSP page at that path. Similarly, when a GET is performed on the URI path count, the
path to the JSP page is
/com/sun/jersey/samples/bookstore/resources/Bookstore/count.jsp.

The JSP variable it is automatically set to the instance of Bookstore so that the index.jsp, or
count.jsp, has access to the Bookstore instance as a Java bean.

If a resource class inherits from another resource class, it will automatically inherit the JSP
pages from the super class.

A JSP page may also include JSP pages using the inheritance mechanism. For example, the
index.jsp page associated with the Book resource class includes a footer.jsp page whose
location is specified by the super class, Item.

The mapping of the URI path space is shown in the following table.

URI Path Resource Class HTTP method

/ Bookstore GET

/count Bookstore GET

/time Bookstore GET

/items/{itemid} Book, CD GET

/items/{itemid}/tracks/{num} Track GET

Mapping the URI Paths and JSP Pages
The mapping of the URI paths and JSP pages is shown in the following table.

The Bookstore Application

RESTful Web Services Developer's Guide • April 200950

URI Path JSP Page

/ /com/sun/jersey/samples/bookstore/resources/Bookstore/index.jsp

/count /com/sun/jersey/samples/bookstore/resources/Bookstore/count.jsp

/time /com/sun/jersey/samples/bookstore/resources/Bookstore/time.jsp

/items/{itemid} /com/sun/jersey/samples/bookstore/resources/Book/index.jsp

/items/{itemid} /com/sun/jersey/samples/bookstore/resources/CD/index.jsp

/items/{itemid}/tracks/{num} /com/sun/jersey/samples/bookstore/resources/Track/index.jsp

▼ Building and Running the Bookstore Application from
a Terminal Window
Open a terminal prompt and navigate to as-install/jersey/samples/bookstore.

Enter mvn glassfish:run and press Enter.
This will build, package, and deploy the project onto GlassFish using Maven.

In a web browser navigate to:
http://localhost:8080/Bookstore/

▼ Building and Running the Bookstore Application from
NetBeans IDE
Select File→Open Project, and browse to the Jersey Bookstore sample application directory to
open the project.

Right-click the project and select Properties. On the Actions tab, make sure that Use external
Maven for build execution is checked. Also on the Actions tab, select Run Project under Actions,
then change the Execute Goals field to package glassfish:run, and change the Set Properties
field to netbeans.deploy=true. On the Run tab, make sure that the server is set to GlassFish v3
Prelude.

Right-click the project and select Run.
This will build, package, and deploy the project onto GlassFish using Maven.

In a web browser navigate to:
http://localhost:8080/Bookstore/

1

2

3

1

2

3

4

The Bookstore Application

Chapter 5 • Jersey Sample Applications 51

When the sample is running, it looks like the following example:

URL: http://locahlhost:8080/Bookstore/

Czech Bookstore

Item List

* Svejk

* Krakatit

* Ma Vlast 1

Others

count inventory

get the system time

regular resources

Other Jersey Examples
For more sample applications that demonstrate the Jersey technology, look in the
as-install/jersey/samples directory. The following list provides a brief description of each
sample application.

■ HelloWorld: This is how everybody starts, using Grizzly as the process HTTP server.
■ HelloWorld-WebApp: This is how everybody starts using a Web application. This

application is described in this book. See section “The HelloWorld-WebApp Application”
on page 36.

■ Bookstore web application: Demonstrates how to use polymorphism with resources and
views that are JSP pages. This application is described in this book. See section “The
Bookstore Application” on page 48.

■ Entity-Provider: Demonstrates pluggable entity providers.
■ Generate-WADL: Demonstrates how to customize generation of the WADL file.
■ Jaxb: Demonstrates the use of Java Architecture for XML Binding (JAXB)-based resources.
■ JMaki-backend web application: Provides JavaScript Object Notation (JSON) to be

consumed by jMaki widgets.
■ Json-From-Jaxb: Demonstrates how to use JSON representation of JAXB-based resources.
■ Mandel: A Mandelbrot service written in the Scala programming language using Scala's

actors to scale-up the calculation.
■ Optimistic-Concurrency: Demonstrates the application of optimistic concurrency to a web

resource.

Other Jersey Examples

RESTful Web Services Developer's Guide • April 200952

https://jaxb.dev.java.net/
http://en.wikipedia.org/wiki/Mandelbrot_set
http://www.scala-lang.org/

■ Simple-Atom-Server: Simple Atom server that partially conforms to the Atom Publishing
Protocol.

■ Simple-Console: Demonstrates a simple service using Grizzly.
■ Simple-Servlet: Demonstrates how to use a Servlet container.
■ Sparklines: A Sparklines application inspired by Joe Gregorio's python application.
■ Spring-annotations: An example leveraging Jersey's Spring-based annotation support.
■ Storage-Service: Demonstrates a basic in-memory web storage service.

This list contains sample applications that are not installed with Jersey, but which also
demonstrate the Jersey technology.

■ RESTful Web Services and Comet: Demonstrates interacting remotely with a Comet web
application. Learn how to build one with Dojo, Java EE technologies, and
GlassFish.http://developers.sun.com/appserver/reference/techart/cometslideshow.html

Other Jersey Examples

Chapter 5 • Jersey Sample Applications 53

http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-06.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-06.html
https://grizzly.dev.java.net/
http://sparkline.org/
http://bitworking.org/projects/sparklines/
https://spring-annotation.dev.java.net/
http://developers.sun.com/appserver/reference/techart/cometslideshow.html

54

Index

Numbers and Symbols
@Consumes, 21
@DELETE, 13, 18
@GET, 13, 18
@Path, 13, 16
@PathParam, 23
@POST, 13, 18
@Produces, 21
@PUT, 13, 18
@QueryParam, 23

A
annotations

Jersey, 13
overview, 13-14

applications
creating, 29-34
deploying, 29-34
running, 29-34
sample, 35

C
client-side, 27
cookie parameters, 23
creating applications, 29-34
creating, with NetBeans, 29-31

D
deploying, 31, 32-34
deploying applications, 29-34
deploying

with NetBeans, 31
without NetBeans, 31-32

deployment descriptor, example, 37

E
entity providers, 19

F
form parameters, 23

H
header parameters, 23
HTTP methods, 18

I
installing, 9

on GlassFish, 9-10

55

J
JAX-RS, 5

APIs, 6
Jersey, 5

APIs, 6
in NetBeans, 10
installing, 9
on GlassFish, 9-10
other info sources, 6-7
samples

installing, 9, 10-11
running, 10

JSR-311, 5

M
matrix parameters, 23
Maven, running samples, 44
MessageBodyReader, 19
MessageBodyWriter, 19

O
overview, further topics, 27

P
parameters, extracting, 23
path parameters, 23
path, templates, 16

Q
query parameters, 23

R
request method designator, 13, 18
resource class, 13
resource method, 13

resource, configuring with runtime, 37
ResponseBuilder, 19
RESTful web services, 5
running applications, 29-34

S
sample applications, 35

Jersey distribution, 52
sample code, 52
samples

installing, 10-11
running, 10

in NetBeans, 37-38
with Maven, 38

security, 27

T
testing

with NetBeans, 31
without NetBeans, 31-32

U
URI path templates, 16

W
WADL, 44
web.xml, example, 37

Index

RESTful Web Services Developer's Guide • April 200956

	RESTful Web Services Developer's Guide
	Introduction to RESTful Web Services and Jersey
	What Are RESTful Web Services?
	How Does Jersey Fit In?
	Learning More About RESTful Web Services

	Installing Jersey and the Jersey Sample Applications
	Installing Jersey on GlassFish
	Adding Jersey to GlassFish

	Installing Jersey in NetBeans
	Installing and Running the Jersey Sample Applications
	Installing the Jersey Sample Applications
	Running the Jersey Examples
	 Running the Examples from the Command Line
	Running the Jersey Examples from NetBeans

	Creating a RESTful Resource Class
	Developing RESTful Web Services with Jersey
	Overview of a Jersey-Annotated Application
	What Are Some of the Annotations Defined by JAX-RS?

	The @Path Annotation and URI Path Templates
	More on URI Path Template Variables

	Responding to HTTP Resources
	The Request Method Designator Annotations
	Using Entity Providers to Map HTTP Response and Request Entity Bodies

	Using @Consumes and @Produces to Customize Requests and Responses
	The @Produces Annotation
	The @Consumes Annotation

	Extracting Request Parameters
	Overview of JAX-RS and Jersey: Further Information

	Creating, Deploying, and Running Jersey Applications
	Using NetBeans to Create Jersey Applications
	Creating a Jersey-Annotated Web Application using NetBeans IDE
	Deploying and Testing a Jersey Application using NetBeans IDE

	Deploying and Testing a Jersey Application Without NetBeans
	Deploying and Testing a Jersey Application without NetBeans
	Deploying a RESTful Web Service

	Jersey Sample Applications
	The Jersey Sample Applications
	Configuring Your Environment

	The HelloWorld-WebApp Application
	Annotating the Resource Class
	Configuring the Resource with the Runtime
	Building and Running the HelloWorld-WebApp Application in NetBeans
	Building and Running the HelloWorld-WebApp Application with Maven

	The Storage-Service Application
	Understanding the Web Resource Classes for the Storage-Service Example
	Building and Running the Storage-Service Application from the Command Line
	Exploring the Storage-Service Example
	Extending the Storage-Service Example
	Example: The Storage-Service WADL

	The Bookstore Application
	Web Resources for Bookstore Application
	Mapping the URI Path in the Bookstore Example
	Mapping the URI Paths and JSP Pages
	Building and Running the Bookstore Application from a Terminal Window
	Building and Running the Bookstore Application from NetBeans IDE

	Other Jersey Examples

	Index

